4,436 research outputs found

    Joint asymptotics for semi-nonparametric regression models with partially linear structure

    Full text link
    We consider a joint asymptotic framework for studying semi-nonparametric regression models where (finite-dimensional) Euclidean parameters and (infinite-dimensional) functional parameters are both of interest. The class of models in consideration share a partially linear structure and are estimated in two general contexts: (i) quasi-likelihood and (ii) true likelihood. We first show that the Euclidean estimator and (pointwise) functional estimator, which are re-scaled at different rates, jointly converge to a zero-mean Gaussian vector. This weak convergence result reveals a surprising joint asymptotics phenomenon: these two estimators are asymptotically independent. A major goal of this paper is to gain first-hand insights into the above phenomenon. Moreover, a likelihood ratio testing is proposed for a set of joint local hypotheses, where a new version of the Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 1 (2001) 153-193] is unveiled. A novel technical tool, called a joint Bahadur representation, is developed for studying these joint asymptotics results.Comment: Published at http://dx.doi.org/10.1214/15-AOS1313 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Semiparametric Additive Transformation Model under Current Status Data

    Full text link
    We consider the efficient estimation of the semiparametric additive transformation model with current status data. A wide range of survival models and econometric models can be incorporated into this general transformation framework. We apply the B-spline approach to simultaneously estimate the linear regression vector, the nondecreasing transformation function, and a set of nonparametric regression functions. We show that the parametric estimate is semiparametric efficient in the presence of multiple nonparametric nuisance functions. An explicit consistent B-spline estimate of the asymptotic variance is also provided. All nonparametric estimates are smooth, and shown to be uniformly consistent and have faster than cubic rate of convergence. Interestingly, we observe the convergence rate interfere phenomenon, i.e., the convergence rates of B-spline estimators are all slowed down to equal the slowest one. The constrained optimization is not required in our implementation. Numerical results are used to illustrate the finite sample performance of the proposed estimators.Comment: 32 pages, 5 figure

    Computational Limits of A Distributed Algorithm For Smoothing Spline

    Get PDF
    In this paper, we explore statistical versus computational trade-off to address a basic question in the application of a distributed algorithm: what is the minimal computational cost in obtaining statistical optimality? In smoothing spline setup, we observe a phase transition phenomenon for the number of deployed machines that ends up being a simple proxy for computing cost. Specifically, a sharp upper bound for the number of machines is established: when the number is below this bound, statistical optimality (in terms of nonparametric estimation or testing) is achievable; otherwise, statistical optimality becomes impossible. These sharp bounds partly capture intrinsic computational limits of the distributed algorithm considered in this paper, and turn out to be fully determined by the smoothness of the regression function. As a side remark, we argue that sample splitting may be viewed as an alternative form of regularization, playing a similar role as smoothing parameter.Comment: To Appear in Journal of Machine Learning Researc

    Nonparametric inference in generalized functional linear models

    Full text link
    We propose a roughness regularization approach in making nonparametric inference for generalized functional linear models. In a reproducing kernel Hilbert space framework, we construct asymptotically valid confidence intervals for regression mean, prediction intervals for future response and various statistical procedures for hypothesis testing. In particular, one procedure for testing global behaviors of the slope function is adaptive to the smoothness of the slope function and to the structure of the predictors. As a by-product, a new type of Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 29 (2001) 153-193] is discovered when testing the functional linear models. Despite the generality, our inference procedures are easy to implement. Numerical examples are provided to demonstrate the empirical advantages over the competing methods. A collection of technical tools such as integro-differential equation techniques [Trans. Amer. Math. Soc. (1927) 29 755-800; Trans. Amer. Math. Soc. (1928) 30 453-471; Trans. Amer. Math. Soc. (1930) 32 860-868], Stein's method [Ann. Statist. 41 (2013) 2786-2819] [Stein, Approximate Computation of Expectations (1986) IMS] and functional Bahadur representation [Ann. Statist. 41 (2013) 2608-2638] are employed in this paper.Comment: Published at http://dx.doi.org/10.1214/15-AOS1322 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore